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Abstract

Let G be a simple graph. A function ϕ : V (G) → {1, 2, . . . , k} a vertex k-labeling which assigns
labels to the vertices of G. For any edge xy in G, we define the weight of this edge as wϕ(xy) =
ϕ(x)+ϕ(y). If all the edgeweights are distinct, then ϕ is termed as an edge irregular k-labeling of
G. The smallest possible value of k for which the graphG possesses an edge irregular k-labeling
is denoted as the edge irregularity strength of G and is represented as es(G). In this paper, we
investigate the edge irregular k-labeling of some classes of grid graphs, namely rhombic graph
Rm

n , triangular graphLm
n and octagonal graphOm

n . As by-product, we obtain their precise value
of edge irregularity strength.

Keywords: rhombic grid; triangular grid; octagonal grid; edge irregular k-labeling; edge irreg-
ularity strength.
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1 Introduction

Consider a simple connected graphG = (V,E)with a vertex set denoted as V (G) and an edge
set as E(G). In the realm of graph theory, graph labeling is a fundamental method used to assign
positive integer labels or weights to various elements of a graph, including vertices, edges, or both.
This technique holds significant importance and finds widespread practical applications, encom-
passing a diverse range of scenarios where it aids in modeling, analysis, and problem-solving.
It proves indispensable in data analysis, streamlining data clustering, and facilitating machine
learning tasks. Notably, it is employed in routing and path planning, image processing, bioinfor-
matics, and social network analysis. Moreover, graph labeling extends its utility to fields such as
chemistry, optimization problems, code generation, game theory, and semantic web annotation.
Its versatility and adaptability render it a valuable instrument for modeling, analyzing, and opti-
mizing complex systems and networks. The irregular labeling or networks are mostly used in the
analysis of networks. What happens when networks are completely irregular, or what happens
when they are completely regular? One can study and analyze networks in this regard. Since
most real-world networks are in between, we have identified both extremes. One can use this to
estimate what happens within real-world networks.

Chartrand et al. [8] introduced the concept of edge k-labeling, denoted as ϕ, for a graphG in a
way that ensures distinct edge weights, i.e., wϕ(x) ̸= wϕ(y) for all vertices x, y ∈ V (G)with x ̸= y.
These labelings were termed "irregular assignments". The irregularity strength, denoted as s(G),
of a graph G is defined as the smallest value of k for which G can have an irregular assignment
using labels up to k. This parameter has garnered significant attention [7, 11, 12].

The concept of an edge irregular k-labeling for a graph G was first presented by Ahmad et al.
[2]. This is a vertex labelingϕ : V (G) → {1, 2, . . . , k}, where the edgeweightswϕ(vu) = ϕ(v)+ϕ(u)
are unique for each edge in the graph. The edge irregularity strength ofG is the lowest value of k for
which such an edge irregular k-labeling exists; it is denoted by es(G). Last couple of years studies
have been carried out on es(G) for different families of graphs and trees [1, 4, 15]. Sometimes,
mathematical approaches are hard or impossible to provide the solution. In such cases, algorith-
mic approaches can also be used, and recently, a lot of work has been done using algorithmic
approaches. In [3], the authors computed the edge irregularity strength of bipartite graphs and
wheel related graphs. Asim et al. [5, 6] used an iterated algorithm for computing the irregularity
strength of complete graphs and circulant graphs, respectively. Tarawneh et al. [14] investigated
the edge irregularity strength of disjoint union of certain graph. Algorithmic approaches have
been used for solving graph problems efficiently. Graph algorithms are famous and have been
used in different real-time applications like path determination, network flow optimization, nat-
ural language processing and machine learning models. Algorithms were used in the field of
graph labeling for the first time in 2018 by Asim et al. [5] for updating upper-bound for vertex
k-labeling of complete graph es(Kn). Ahmad and colleagues conducted a computer-based exper-
iment, as described in their paper [1], to achieve vertex k-labeling for completem-ary trees using
algorithmic methods. Subsequently, they applied this algorithmic approach to determine vertex
k-labeling for various graph types, including wheel-related graphs, bipartite graphs, and circu-
lant graphs, as indicated in references [3] and [6]. These innovative solutions have broadened the
horizons for computer experts, offering valuable tools and insights in the field of graph labeling,
as emphasized by references [4] and [14]. Specifically, a lower bound on the vertex k-labeling of
a graph G is established by the following theorem [2].

The following theorem establishes a lower bound for the vertex k-labeling es of any graph G.
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Theorem 1.1. [2] Let G = (V,E) be a simple graph with maximum degree ∆ = ∆(G). Then,

es(G) ≥ max

{⌈
|E(G)|+ 1

2

⌉
,∆(G)

}
.

The authors in [2] established constraints on the parameter es(G) and provided specific values for
vertex k-labeling in several graph families, such as the n×m grid graph, formed by the Cartesian
product of two paths. In addition, the work conducted by Tarawneh and their research team,
as referenced in their paper [16], stands out for its achievement in finding the exact vertex k-
labeling for specific types of graphs. These include the triangular graph, the zigzag graph and
the Cartesian product of three paths Pn, Pm and P2. Please refer to [9, 17] and its references for
additional results. Their findings have significantly contributed to the understanding of graph
labeling and have practical implications in various domains. In continuation of this research, our
paper focuses on determining the precise value of vertex k-labeling for grid graphs with distinct
geometries, including rhombic, triangular, and octagonal structures. By extending the exploration
of exact vertex k-labeling to these specific graph types, we aim to enhance our understanding of
labeling in diverse grid graph contexts and its applications in real-world problem-solving and
analysis.

2 Rhombic Grid Graph

A rhombic grid graph with the vertex set V (Rm
n ) and edge set E(Rm

n ) is denoted by Rm
n . Note

that |E(Rm
n )| = 4mn and |V (Rm

n )| = 2mn + m + n, where n,m ≥ 2. The inequality es(G) ≥
max

{⌈
|E(G)|+1

2

⌉
,∆(G)

}
was proven. Given that ∆(G) = 4, es(G) ≥

⌈
|E(G)|+1

2

⌉
= 2mn + 1,

according to Theorem 1.1. An edge irregular 2mn + 1-labeling for Rm
n is described in order to

demonstrate that 2mn+ 1 is an upper bound for the es(Rm
n ).

V (Rm
n ) = {vqp| 1 ≤ p ≤ n, 1 ≤ q ≤ m, } ∪ {uq

p| 1 ≤ p ≤ n+ 1, 1 ≤ q ≤ m},

and

E(Rm
n ) = {vqpuq

p| 1 ≤ p ≤ n, 1 ≤ q ≤ m} ∪ {vqpu
q
p+1| 1 ≤ p ≤ n+ 1, 1 ≤ q ≤ m}

∪ {uq
pv

q+1
p | 1 ≤ p ≤ n, 1 ≤ q ≤ m} ∪ {uq

pv
q+1
p−1| 1 ≤ p ≤ n, 1 ≤ q ≤ m},

with |V (Rm
n )| = 2mn +m + n and |E(Rm

n )| = 4mn. Figure 1 shows the rhombic grid graph Rm
n

wherem = 3 and n = 4.
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Figure 1: Rhombic grid graph Rm
n = R3

4 .

Now, we present our main theorem.

Theorem 2.1. For m,n ≥ 2, es(Rm
n ) = 2mn+ 1.

Proof. Consider the rhombic grid graph denoted as Rm
n with V (Rm

n ) as vertex set and E(Rm
n ) as

edge set. Notably, |V (Rm
n )| = 2mn+n+m, and |E(Rm

n )| = 4nm. In the provided analysis, wedirect
our attention to rhombic grid graphs, specifically denoted as Rm

n with n,m ≥ 2. These graphs
represent an array of rhombuses, with n representing the number of rhombuses in a row and m
indicating the number of rhombuses in a column. To understand the lower bound for the vertex
k-labeling (es(G)) of these graphs, we refer to a previously established result in graph theory. The
vertex k-labeling of any graph, es(G), is thus required to follow a lower bound determined by two
factors:

⌈
|E(G)|+1

2

⌉
, and the maximum degree of a vertex in the graph, ∆(G). Since ∆(G) = 4,

es(G) ≥
⌈
|E(G)|+1

2

⌉
= 2mn+ 1, according to Theorem 1.1.

This calculation results in a lower bound of 2mn+1 for the vertex k-labeling. Now, to demon-
strate that 2mn+1 indeed serves as an upper bound for es(Rm

n ), we proceed to construct an edge
irregular 2mn + 1-labeling for the specific rhombic grid graph Rm

n . Such a labeling ensures that
the weights assigned to the edges within this graph are distinct, thereby confirming that the edge
irregularity strength of Rm

n does not exceed 2mn + 1. Let the vertex labeling ϕ1 : V (Rm
n ) →

{1, 2, . . . , 2m+ 1} defined as follows:

ϕ1(v
q
p) =


1, if p = 1, q = 1,

2p, if q = 1, 2 ≤ p ≤ n,

2n(q − 2) + 2p+ 1, if 2 ≤ q ≤ m+ 1, 1 ≤ p ≤ n,

ϕ1(u
q
p) =


1, if q = 1, p = 1,

2(p− 1), if q = 1, 2 ≤ p ≤ n+ 1,

2nq − (1−(−1)p)
2 , if 2 ≤ q ≤ m, 1 ≤ p ≤ n+ 1.
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The weight of the edges are as follows:

wϕ1
(vqpu

q
p) =


2, if q = 1, p = 1,

4p− 2, if q = 1, 2 ≤ p ≤ n,

4nq − 4n+ 2p− (1−(−1)p)
2 + 1, if 1 ≤ p ≤ n and 2 ≤ q ≤ m,

wϕ1
(vqpu

q
p+1) =


2p+ 1, if p = 1, q = 1,

4p, if 2 ≤ p ≤ n, q = 1,

4nq − 4n+ 2i− (1−(−1)p)
2 + 1, if 1 ≤ i ≤ n and 2 ≤ q ≤ m,

wϕ1(u
q
pv

q+1
p ) =


2nq − 2n+ 4, if p = 1, q = 1,

2nq − 2n+ 4p− 1, if 2 ≤ p ≤ n, q = 1,

4nq − 2n+ 2p− (1−(−1)p)
2 + 1, if 1 ≤ p ≤ n and 2 ≤ q ≤ m,

and

wϕ1(u
q
pv

q+1
p−1) =

{
2nq − 2n+ 4p− 3, if 2 ≤ p ≤ n+ 1, q = 1,

4nq − 2n+ 2p− (1−(−1)p)
2 − 1, if 2 ≤ p ≤ n+ 1 and 2 ≤ q ≤ m.

The uniqueness of all edge weights in the context of the vertex labeling ϕ1 signifies a significant
result. It indicates that this particular vertex labeling, denoted asϕ1, stands as an optimal choice for
achieving edge irregularity. The fact that all edge weights are distinct strengthens its optimality.
In essence, ϕ1 offers a highly efficient labeling scheme that allows for precise differentiation of
edges within the graph. In this case, the labeling represents an optimal edge irregular 2mn + 1-
labeling. This conclusion provides a strong basis for the proof’s completion, demonstrating the
effectiveness and optimality of ϕ1 in achieving edge irregularity within the graph.

Figure 2 shows the graph R3
4 which admits the 25-edge irregular labeling.

Figure 2: The edge irregularity strength of R3
4 is 25.
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3 Triangular Grid Graph

The triangular grid graph Lm
n is a graph structure represented by two parameters, n and m,

where n is the number of vertices in a row, andm is the number of squares in a column, see Figure
3. It can be visualized as a grid composed of triangles, where each vertex represents an intersection
point, and the edges correspond to the sides of these triangles. The conditions n ≥ 2 and m ≥ 1
indicate that the configuration is applicable when there are at least two vertices in a row and at
least one square in a column.

Figure 3: Triangular grid graph Lm
n .

The graph’s vertex set, denoted as V (Lm
n ), represents all intersection points, while the edge set,

denoted asE(Lm
n ), represents the connections between these points. Formally, V (Lm

n ) andE(Lm
n )

are defined as follows:

V (Lm
n ) = {xp,q| 1 ≤ p ≤ n, 1 ≤ q ≤ m+ 1},

and
E(Lm

n ) = {xp,qxp+1,q| 1 ≤ p ≤ n− 1, 1 ≤ q ≤ m+ 1}
∪ {xp,qxp,q+1| 1 ≤ p ≤ n, 1 ≤ q ≤ m}
∪ {xp+1,qxp,q+1| 1 ≤ p ≤ n− 1, 1 ≤ q ≤ m and q is odd}
∪ {xp,qxp+1,q+1| 1 ≤ p ≤ n− 1, 1 ≤ q ≤ m and q is even}.

Tarawneh et al. [16] determined the exact value of the vertex k-labeling for a specific type of
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grid graph known as the triangular grid graph, denoted as Ln = L1
n. This outcome signifies his

accomplishment in solving this particular graph’s edge irregularity strength problem.

Theorem 3.1. [16] For n ≥ 2, es(Ln) = 2n.

In this paper, we continue to investigate the exact value of the vertex k-labeling of Lm
n where

m = 2, 3.

Theorem 3.2. For any integer n ≥ 2, then

es(L2
n) =

{
6, n = 2,

4n− 1, n ≥ 3,

Proof. Consider the graph L2
n with the vertex set denoted as V (L2

n) and the edge set as E(L2
n).

Notably, |V (L2
n)| = 3n and |E(L2

n)| = 7n − 5. It is worth mentioning that the maximum degree
of L2

n, represented as ∆(L2
n), is 6. For the special case when n = 2, as shown in Figure 4(a),

we find that es(L2
2) = 6. However, when n ≥ 3, by invoking Theorem 1.1, we establish that

es(L2
n) ≥ max{⌈ 7n−4

2 ⌉, 6} = ⌈ 7n−4
2 ⌉. Additionally, taking into account the edges xp,q , xp+1,q , and

xp,q+1 as parts of the entire graph K3, it is clear that the minimum edge weight needs to be 3.
Thus, the edge weights successfully span values in the set {3, 4, 5, . . . , 4n− 1} under the labeling
ϕ2. It follows from this fact that es(L2

n) ≥ 4n− 1.

To establish the inequality es(L2
n) ≤ 4n − 1, we introduce a vertex labeling ϕ2 : V (L2

n) →
{1, 2, . . . , 4n− 1} in the following manner:

ϕ2(xp,q) = 4(p− 1) + q, if 1 ≤ p ≤ n, 1 ≤ q ≤ 3.

The edge weights of all edges are given as follows.

wϕ2
(xp,qxp+1,q) = 8p− 4 + 2q, if 1 ≤ p ≤ n, 1 ≤ q ≤ 3,

wϕ2
(xp,qxp,q+1) = 8p− 7 + 2q, if 1 ≤ p ≤ n, 1 ≤ q ≤ 2,

wϕ2
(xp+1,qxp,q+1) = 8p− 1, if 1 ≤ p ≤ n− 1, q = 1,

and

wϕ2
(xp,qxp+1,q+1) = 8p+ 1, if 1 ≤ p ≤ n− 1, q = 2.

The vertex labeling ϕ2 is determined to be the optimal edge irregular labelingwith 4n−1 labels
since every edge weight shows unique values. This indicates that the proof has ended here.
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Figure 4: Triangular grid graphs of L2
2,L

3
2, and L3

3.

Figure 5 shows the graph L2
5 which admits the 19-edge irregular labeling.

Figure 5: An edge irregular 19-labeling of octagonal grid graph L2
5.

Theorem 3.3. For any integer n ≥ 2, then

es(L3
n) =

{
7n− 6, n ∈ {2, 3},
6n− 2, n ≥ 4.

Proof. LetL3
n represents a graphwith vertex set V (L3

n) and edge setE(L3
n). Note that |V (L3

n)| = 4n
and |E(L3

n)| = 10n− 7. The maximum degree of L3
n is 6 as depicted in Figure 3. Firstly, graph L3

n

with n = 2, 3 is shown in Figure 4(b) and 4(c), respectively. If n ≥ 4, according to Theorem 1.1,
we establish that es(L3

n) ≥ max{⌈ 10n−6
2 ⌉, 6} = 10n − 6. The minimum edge weight of K3 must
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be at least 3, as the edges xp,q , xp+1,q , and xp,q+1 are components of the entire graph. As thus, the
labeling ϕ3’s edge weights take values from the set {3, 4, 5, . . . , 6n− 2}. We build a suitable vertex
labeling ϕ3 : V (L3

n) → {1, 2, . . . , 6n− 2} so as to illustrate the inequality es(L3
n) ≤ 6n− 2.

ϕ3(xp,q) = 6(p− 1) + q, if 1 ≤ p ≤ n, 1 ≤ q ≤ 4.

The edge weights of all edges are given as follows:

wϕ3(xp,qxp+1,q) = 12p− 6 + 2q, if 1 ≤ p ≤ n− 1, 1 ≤ q ≤ 4,

wϕ3
(xp,qxp,q+1) = 12p− 11 + 2q, if 1 ≤ p ≤ n, 1 ≤ q ≤ 3,

wϕ3
(xp+1,qxp,q+1) = 12p+ 2q − 5, if 1 ≤ p ≤ n− 1, 1 ≤ q ≤ 4, q is odd,

and

wϕ3(xp,qxp+1,q+1) = 12p+ 2q − 5, if 1 ≤ p ≤ n− 1, 2 ≤ q ≤ 4, q is even.

As all edge weights are distinct, the vertex labeling ϕ3 is an optimal edge irregular labeling with
(6n− 2) labels. This concludes the proof.

Figure 6 shows the graph L3
6 which admits the 34-edge irregular labeling.

Figure 6: An edge irregular 34-labeling of L3
6.

We are not able find the exact value of edge irregular labeling for Ln
m for general n ≥ 2, m ≥ 1.

Therefore, we re-state the following open problem (see also [16]).

Problem 1. Determine the exact value of es(Ln
m) for n ≥ 1 and m ≥ 4.
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4 Octagonal Grid Graph

In the research conducted by Siddiqui and their team, as referenced in their paper [13], they
determined the exact value of what is known as the total edge irregularity strength for the octag-
onal grid graph. This value quantifies how irregular the edges are labeled in this specific type of
graph.

Additionally, in another studymentioned in a separate paper [10], different authors calculated
the exact value of what’s referred to as the edge H-irregularity strength for both hexagonal and
octagonal grid graphs. This measure helps us understand the irregularity of edges in a different
context, where "H" presumably signifies a specific type of irregularity.

This section of the current work is dedicated to further investigating and determining the exact
value of the vertex k-labeling for the octagonal grid graph. This research extends the understand-
ing of how edges are labeled irregularly in the context of this particular type of graph, contributing
to the broader field of graph theory.

We work with finite graphs. For m and n, both greater than or equal to 1 (i.e., m,n ≥ 1), we
represent the octagonal grid graph as Om

n . This graph is illustrated in Figure 7, creating a planar
map consisting of m rows and n columns of octagons.

Figure 7: The octagonal grid Om
n .

To reference its components, we use the notations V (Om
n ) for the vertex set and E(Om

n ) for the
edge set. This simplifies the definition of the graph’s structure and properties.

V (O1
n) = {x1

p| 1 ≤ p ≤ 2n− 1, p odd } ∪ {x1
p| 1 ≤ p ≤ 2n, p even } ∪ {x2

2n, x
3
2n },
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E(O1
n) = {x1

px
1
p+1| 1 ≤ p ≤ 2n− 1, p odd} ∪ {x2

px
1
2p−2| 2 ≤ p ≤ n} ∪ {x2

px
1
2p−2| 2 ≤ p ≤ n}

∪ {x2
px

3
p; 1 ≤ p ≤ n+ 1, } ∪ {x4

px
4
p+1| 1 ≤ p ≤ 2n− 1, p is odd} ∪ {x3

px
4
2p−1| 1 ≤ p ≤ n}

∪ {x3
p+1x

4
2p−2| 1 ≤ p ≤ n+ 1},

with |V (Om
n )| =(4m+ 2)n+ 2m and |E(Om

n )|= (6m+ 1)n+m.

We determine the precise value of the vertex k-labeling (es) for the octagonal grid graph O1
n,

where n ≥ 1, in the following theorem. In particular, we find es(O1
n), which represents the vertex

k-labeling of the octagonal grid graph with order n ≥ 1.

Theorem 4.1. For any integer n ≥ 2, then es(O1
n) = ⌈ 7n+2

2 ⌉.

Proof. Let O1
n represents a graph with vertex set V (O1

n) and edge set E(O1
n). Note that |V (O1

n)| =
6n + 2 and |E(O1

n)| = 7n + 1. We establish that es(O1
n) ≥ max{⌈ 7n+1+1

2 ⌉} = ⌈ 7n+2
2 ⌉. Thus,

the edge weight under the labeling ϕ4 attain values {2, 3, 4, . . . , 7n + 2}. To prove the inequality
es(O1

n) ≤ ⌈ 7n+2
2 ⌉, we establish appropriate vertex labeling ϕ4 :V (O1

n) → {1, 2, . . . , ⌈ 7n+2
2 ⌉} such

that

ϕ4(x
1
p) =


7
(
p−4
4

)
+ 7, if p ≡ 0(mod 4),

7
(
p−1
4

)
+ 3, if p ≡ 1(mod 4),

7
(
p−2
4

)
+ 3, if p ≡ 2(mod 4),

7
(
p−3
4

)
+ 6, if p ≡ 3(mod 4),

ϕ4(x
2
p) =

{
7
(
p−1
2

)
+ 1, if p is odd,

7
(
p−2
2

)
+ 5, if p is even,

ϕ4(x
3
p) =

{
7
(
p−1
2

)
+ 1, if p is odd,

7
(
p−2
2

)
+ 4, if p is even,

ϕ4(x
4
p) =


7
(
p−1
4

)
+ 2, if p ≡ 1(mod 4),

7
(
p−2
4

)
+ 3, if p ≡ 2(mod 4),

7
(
p−3
4

)
+ 6, if p ≡ 3(mod 4),

7
(
p−4
4

)
+ 6, if p ≡ 0(mod 4).

The weight of all the edges are as follows:

ϕ4(x
1
px

1
p+1) = 7(

p− 1

2
) + 6, if p is odd, 1 ≤ i ≤ 2n− 1,

ϕ4(x
2
px

1
2p−1) = 7p− 3, if 1 ≤ p ≤ n,

ϕ4(x
2
px

1
2p−2) = 7p− 6, if 2 ≤ p ≤ n,

ϕ4(x
2
px

3
p) = 7p− 5, if 1 ≤ p ≤ n+ 1,

ϕ4(x
4
px

4
p+1) = 7p− 2, if p is odd, 1 ≤ p ≤ 2n− 1,

ϕ4(x
3
px

4
2p−1) = 7p− 4, if 1 ≤ p ≤ n,

ϕ4(x
3
p+1x

4
2p−2) = 7p, if 1 ≤ p ≤ n+ 1.

The vertex labeling ϕ4 is an optimal edge irregular ⌈ 7n+2
2 ⌉-labeling because all edge weights are

different. The proof is now complete.
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Figure 8: An edge irregular 19-labeling of O1
5 .

Figure 8 shows the graph O1
5 which admits the 19-edge irregular labeling.

Our attempts to ascertain the exact value of edge irregular labeling for On
m in the context of all

generic n ≥ 2 and m ≥ 2 have not yielded success. This remains an unsolved challenge, present-
ing an open problem for researchers. The exploration of edge irregular labeling in the specific
mathematical structure On

m proves elusive, underscoring the complexity of the problem. This
enigma beckons to those in the mathematical community to unravel its intricacies and contribute
to the advancement of knowledge in this domain. The quest for understanding the nature of edge
irregular labeling in On

m stands as an intriguing mathematical puzzle, awaiting fresh perspectives
and innovative solutions from aspiring researchers.

To conclude this section, we suggest the problem as given below.

Problem 2. Investigate the precise value of es(On
m) for all n ≥ 2 andm ≥ 2.

5 Conclusion

The paper discusses the concept of edge k-labeling in graph theory, focusing on irregular as-
signments and the edge irregularity strength of graphs. It references several studies that explore
different families of graphs and trees, as well as the application of algorithmic approaches in de-
termining edge irregularity strength. Theorems are presented to establish lower bounds for the
edge irregularity strength of certain graph families, including rhombic, triangular, and octagonal
grid graphs.

For rhombic grid graphsRm
n , the paper proves that es(Rm

n ) = 2mn+1 form,n ≥ 2. It provides
a detailed proof and construction of an optimal edge irregular labeling for these graphs. Next,
for triangular grid graphs Lm

n , where m = 2, 3 and n ≥ 2, the paper determines the exact edge
irregularity strength. For L2

n, the edge irregularity strength is shown to be 6 for n = 2 and 4n− 1
for n ≥ 3. Similarly, for L3

n, the edge irregularity strength is 7n−6 for n = 2, 3 and 6n−2 for n ≥ 4.
The proofs involve establishing lower bounds using existing theorems and constructing optimal
edge irregular labeling.

The paper contributes to the understanding of edge irregularity strength in various graph fam-
ilies and provides precise values for specific cases, enhancing the theoretical foundation of graph
labeling and its practical applications.
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